This article is all about Matplotlib, the basic data visualization tool of Python programming language for Data Science.
Here I will discuss various plot types with Matplotlib and customization techniques associated with Data Science.
Introduction to Matplotlib
MatplotlibĀ is the basic plotting library of Python programming language. It is the most prominent tool among Python visualization packages. Matplotlib is highly efficient in performing wide range of tasks.
It can produce publication quality figures in a variety of formats. It can export visualizations to all of the common formats like PDF, SVG, JPG, PNG, BMP and GIF.
It can create popular visualization types ā line plot, scatter plot, histogram, bar chart, error charts, pie chart, box plot, and many more types of plot.
Matplotlib also supports 3D plotting. Many Python libraries are built on top of Matplotlib. For example, pandas and Seaborn are built on Matplotlib. They allow to access Matplotlibās methods with less code.
Letās Start with Matplotlib by importing the dependencies and matplotlib
# Import dependencies import numpy as np import pandas as pd # Import Matplotlib import matplotlib.pyplot as plt
Displaying Plots in Matplotlib
x1 = np.linspace(0, 10, 100) # create a plot figure fig = plt.figure() plt.plot(x1, np.sin(x1), '-') plt.plot(x1, np.cos(x1), '--') plt.show() # to show the plot

Matplotlib Object Hierarchy
There is an Object Hierarchy within Matplotlib. In Matplotlib, a plot is a hierarchy of nested Python objects. A hierarchyĀ means that there is a tree-like structure of Matplotlib objects underlying each plot.
AĀ FigureĀ object is the outermost container for a Matplotlib plot. TheĀ FigureĀ object contain multipleĀ AxesĀ objects. So, theĀ FigureĀ is the final graphic that may contain one or moreĀ Axes. TheĀ AxesĀ represent an individual plot.
So, we can think of theĀ FigureĀ object as a box-like container containing one or moreĀ Axes. TheĀ AxesĀ object contain smaller objects such as tick marks, lines, legends, title and text-boxes.
Matplotlib API Overview
Matplotlib has two APIs to work with. A MATLAB-style state-based interface and a more powerful object-oriented (OO) interface. The former MATLAB-style state-based interface is calledĀ pyplot interfaceĀ and the latter is calledĀ Object-OrientedĀ interface.
There is a third interface also calledĀ pylabĀ interface. It merges pyplot (for plotting) and NumPy (for mathematical functions) together in an environment closer to MATLAB.
This is considered bad practice nowadays. So, the use ofĀ pylabĀ is strongly discouraged and hence, I will not discuss it any further.
# create a plot figure plt.figure() # create the first of two panels and set current axis plt.subplot(2, 1, 1) # (rows, columns, panel number) plt.plot(x1, np.sin(x1)) # create the second of two panels and set current axis plt.subplot(2, 1, 2) # (rows, columns, panel number) plt.plot(x1, np.cos(x1)) plt.show()

Visualization with Pyplot
Generating visualization with Pyplot is very easy. The x-axis values ranges from 0-3 and the y-axis from 1-4. If we provide a single list or array to the plot() command, matplotlib assumes it is a sequence of y values, and automatically generates the x values.
Since python ranges start with 0, the default x vector has the same length as y but starts with 0. Hence the x data are [0,1,2,3] and y data are [1,2,3,4].
plt.plot([1, 2, 3, 4]) plt.ylabel('Numbers') plt.show()

State-machine interface
Pyplot provides the state-machine interface to the underlying object-oriented plotting library. The state-machine implicitly and automatically creates figures and axes to achieve the desired plot. For example:
x = np.linspace(0, 2, 100) plt.plot(x, x, label='linear') plt.plot(x, x**2, label='quadratic') plt.plot(x, x**3, label='cubic') plt.xlabel('x label') plt.ylabel('y label') plt.title("Simple Plot") plt.legend() plt.show()

Formatting the style of plot
For every x, y pair of arguments, there is an optional third argument which is the format string that indicates the color and line type of the plot. The letters and symbols of the format string are from MATLAB.
We can concatenate a color string with a line style string. The default format string is āb-ā, which is a solid blue line. For example, to plot the above line with red circles, we would issue the following command:-
plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro') plt.axis([0, 6, 0, 20]) plt.show()

TheĀ axis()Ā command in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.
Working with NumPy arrays
Generally, we have to work with NumPy arrays. All sequences are converted to numpy arrays internally.
The below example illustrates plotting several lines with different format styles in one command using arrays.
# evenly sampled time at 200ms intervals t = np.arange(0., 5., 0.2) # red dashes, blue squares and green triangles plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^') plt.show()

Object-Oriented API
TheĀ Object-Oriented APIĀ is available for more complex plotting situations. It allows us to exercise more control over the figure.
In Pyplot API, we depend on some notion of an āactiveā figure or axes. But, in theĀ Object-Oriented APIĀ the plotting functions are methods of explicit Figure and Axes objects.
FigureĀ is the top level container for all the plot elements. We can think of theĀ FigureĀ object as a box-like container containing one or moreĀ Axes.
TheĀ AxesĀ represent an individual plot. TheĀ AxesĀ object contain smaller objects such as axis, tick marks, lines, legends, title and text-boxes.
The following code produces sine and cosine curves using Object-Oriented API:
# First create a grid of plots # ax will be an array of two Axes objects fig, ax = plt.subplots(2) # Call plot() method on the appropriate object ax[0].plot(x1, np.sin(x1), 'b-') ax[1].plot(x1, np.cos(x1), 'b-')

Objects and Reference
The main idea with theĀ Object Oriented APIĀ is to have objects that one can apply functions and actions on. The real advantage of this approach becomes apparent when more than one figure is created or when a figure contains more than one subplot.
We create a reference to the figure instance in theĀ figĀ variable. Then, we ceate a new axis instanceĀ axesĀ using theĀ add_axesĀ method in the Figure class instance fig as follows:
fig = plt.figure() x2 = np.linspace(0, 5, 10) y2 = x2 ** 2 axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) axes.plot(x2, y2, 'r') axes.set_xlabel('x2') axes.set_ylabel('y2') axes.set_title('title')

Parts of a Plot
There are different parts of a plot. These are title, legend, grid, axis and labels etc. These are denoted in the following figure:-

First plot with Matplotlib
Now, I will start producing plots. Here is the first example:-
plt.plot([1, 3, 2, 4], 'b-') plt.show()

plt.plot([1, 3, 2, 4], 'b-')
This code line is the actual plotting command. Only a list of values has been plotted that represent the vertical coordinates of the points to be plotted.
Matplotlib will use an implicit horizontal values list, from 0 (the first value) to N-1 (where N is the number of items in the list).
Specify both Lists
Also, we can explicitly specify both the lists as follows:
x3 = np.arange(0.0, 6.0, 0.01) plt.plot(x3, [xi**2 for xi in x3], 'b-') plt.show()

Multiline Plots
Multiline Plots mean plotting more than one plot on the same figure. We can plot more than one plot on the same figure.
It can be achieved by plotting all the lines before calling show(). It can be done as follows:
x4 = range(1, 5) plt.plot(x4, [xi*1.5 for xi in x4]) plt.plot(x4, [xi*3 for xi in x4]) plt.plot(x4, [xi/3.0 for xi in x4]) plt.show()

Ā Saving the Plot
We can save the figures in a wide variety of formats. We can save them using theĀ savefig()Ā command as follows:
# Saving the figure fig.savefig('plot1.png')
Scatter Plot
Another commonly used plot type is the scatter plot. Here the points are represented individually with a dot or a circle.
Scatter Plot with plt.plot()
We have used plt.plot/ax.plot to produce line plots. We can use the same functions to produce the scatter plots as follows:
x7 = np.linspace(0, 10, 30) y7 = np.sin(x7) plt.plot(x7, y7, 'o', color = 'black')

Histogram
Histogram charts are a graphical display of frequencies. They are represented as bars. They show what portion of the dataset falls into each category, usually specified as non-overlapping intervals. These categories are called bins.
TheĀ plt.hist()Ā function can be used to plot a simple histogram as follows:
data1 = np.random.randn(1000) plt.hist(data1)

Bar Chart
Bar charts display rectangular bars either in vertical or horizontal form. Their length is proportional to the values they represent. They are used to compare two or more values.
We can plot a bar chart using plt.bar() function. We can plot a bar chart as follows:-
data2 = [5. , 25. , 50. , 20.] plt.bar(range(len(data2)), data2) plt.show()

Horizontal Bar Chart
We can produce Horizontal Bar Chart using the plt.barh() function. It is the strict equivalent of plt.bar() function.
data2 = [5. , 25. , 50. , 20.] plt.barh(range(len(data2)), data2) plt.show()

Error Bar Chart
In experimental design, the measurements lack perfect precision. So, we have to repeat the measurements. It results in obtaining a set of values.
The representation of the distribution of data values is done by plotting a single data point (known as mean value of dataset) and an error bar to represent the overall distribution of data.
We can use MatplotlibāsĀ errorbar()Ā function to represent the distribution of data values. It can be done as follows:
x9 = np.arange(0, 4, 0.2) y9 = np.exp(-x9) e1 = 0.1 * np.abs(np.random.randn(len(y9))) plt.errorbar(x9, y9, yerr = e1, fmt = '.-') plt.show()

Stacked Bar Chart
We can draw stacked bar chart by using a special parameter calledĀ bottomĀ from the plt.bar() function. It can be done as follows:
A = [15., 30., 45., 22.] B = [15., 25., 50., 20.] z2 = range(4) plt.bar(z2, A, color = 'b') plt.bar(z2, B, color = 'r', bottom = A) plt.show()

Pie Chart
Pie charts are circular representations, divided into sectors. The sectors are also calledĀ wedges. The arc length of each sector is proportional to the quantity we are describing.
It is an effective way to represent information when we are interested mainly in comparing the wedge against the whole pie, instead of wedges against each other.
Matplotlib provides theĀ pie()Ā function to plot pie charts from an array X. Wedges are created proportionally, so that each value x of array X generates a wedge proportional to x/sum(X).
plt.figure(figsize=(7,7)) x10 = [35, 25, 20, 20] labels = ['Computer', 'Electronics', 'Mechanical', 'Chemical'] plt.pie(x10, labels=labels) plt.show()

Boxplot
Boxplot allows us to compare distributions of values by showing the median, quartiles, maximum and minimum of a set of values.
We can plot a boxplot with theĀ boxplot()Ā function as follows:
data3 = np.random.randn(100) plt.boxplot(data3) plt.show()

TheĀ boxplot()Ā function takes a set of values and computes the mean, median and other statistical quantities. The following points describe the preceeding boxplot:
⢠The red bar is the median of the distribution.
⢠The blue box includes 50 percent of the data from the lower quartile to the upper quartile. Thus, the box is centered on the median of the data.
⢠The lower whisker extends to the lowest value within 1.5 IQR from the lower quartile.
⢠The upper whisker extends to the highest value within 1.5 IQR from the upper quartile.
⢠Values further from the whiskers are shown with a cross marker.